首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Acute hormonal control of pyruvate kinase and lactate formation in the isolated rat hepatocyte.
Authors:J L Foster  J B Blair
Institution:Department of Biochemistry, West Virginia University Medical Center, Morgantown, West Virginia 26506 USA
Abstract:The activity of pyruvate kinase from the isolated rat hepatocyte was studied under conditions which allow investigation into the hormonal regulation of the enzyme. Incubating hepatocytes from fed or fasted rats with 1 μm glucagon gives approximately 60% inhibition of the enzyme activity determined at 1.6 mm P-enolpyruvate. A good correlation between the regulation of pyruvate kinase and lactate formation from 10 mm dihydroxyacetone is observed in hepatocytes from fasted rats. When hepatocytes are incubated in a Krebs-Ringer phosphate buffer, the inhibition of the pyruvate kinase activity by 1 μm glucagon is not accompanied by a marked inhibition of lactate production from fructose. Half-maximal regulation is observed at 0.26 ± 0.02 nm glucagon and 0.37 ± 0.05 nm glucagon for the enzyme and lactate formation from dihydroxyacetone respectively. Incubating hepatocytes with 10 mm l-alanine enhances inhibition of pyruvate kinase by physiological concentrations of glucagon, lowering the half-maximally effective concentration of glucagon from 0.3 nm to approximately 0.1 nm. A small but consistent inhibition of pyruvate kinase by 10 μm epinephrine is also observed and this inhibition is enhanced by 0.5 mm theophylline and by 10 mm l-alanine. The inhibition of pyruvate kinase by epinephrine both in the absence and presence of theophylline is blocked by the α-adrenergic antagonist phenoxybenzamine. The β-adrenergic blocker propranolol has no influence on the inhibition of the enzyme by epinephrine. Adenosine 3′:5′-monophosphate, N6O2-dibutyryl adenosine 3′:5′-monophosphate, and guanosine 3′:5′-monophosphate also inhibit glycolysis from dihydroxyacetone and modulate pyruvate kinase activity in hepatocytes from fasted rats. Oleate, ethanol, and 3-hydroxybutyrate inhibit dihydroxyacetone glycolysis, but they do not influence the activity of pyruvate kinase. The divalent metal ionophore A23187 slightly stimulates lactate synthesis from dihydroxyacetone, but it has no influence on pyruvate kinase activity.
Keywords:To whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号