首页 | 本学科首页   官方微博 | 高级检索  
     


Cooked Odor of Euphausia pacifica Hansen
Authors:Kikue Kubota  Akio Kobayashi  Tei Yamanishi
Affiliation:Laboratory of Food Chemistry, Ochanomizu University, Bunkyo-ku, Tokyo 112, Japan
Abstract:Quinoxaline and benzimidazole derivatives obtained from L-rhamnose and L-fucose under deoxygenated, weakly acidic, heated conditions were studied using GLC, HPLC, and NMR.

Four quinoxalines and one benzimidazole were obtained from L-rhamnose (RHA-I, II, III, III′, and IV) and L-fucose (FUA-I, II, III, IV, and V) in an acidic solution (MeOH-AcOH-H2I = 8 : 1 : 2) at 80°C. The total yield of the products as sugar was about 80% from either rhamnose or fucose.

The structure of RHA-I was (2′S)-2-methyl-3-(2′-hydroxypropyl)quinoxaline; RHA-II, (2′R,3′S)-2-(2′,3′-dihydroxybutyl)quinoxaline; RHA-III, (1′S,2′S,3′S)-2-(1′2′3′-trihydroxybutyl)quinoxaline[2-(L-arabino-1′,2′,3′-trihydroxybutyl)quinoxaline]; RHA-III′, 2-(L-ribo-1′,2′,3′-trihydroxybutyl)quinoxaline; and RHA-IV, 2-(L-manno-1′,2′,3′,4′-tetrahydroxypentyl)-benzimidazole, and the structure of FUA-I was the same as RHA-I; FUA-II, (2′S, 3′S)-2-(2′, 3′-dihydroxybutyl)quinoxaline; FUA-III, (1′R, 2′R, 3′S)-2-(1′,2′,3′-trihydroxybutyl)quinoxaline [2-(L-xylo-1′,2′,3′-trihydroxybutyl)quinoxaline; FUA-IV, 2-(L-lyxo-1′,2′,3′-trihydroxybutyl)-quinoxaline; and FUA-V, 2-(L-galacto-1′,2′,3′,4′-tetrahydroxypentyl)benzimidazole. These results suggest no significant difference for the pathways of quinoxaline and benzimidazole formation between L-rhamnose and L-fucose. Possible pathways are proposed for each sugar.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号