首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of Enzyme Synthesis of the Glyoxylate,the Citric Acid,and the Methylcitric Acid Cycles in Candida lipolytica
Authors:Takeshi Tabuchi  Keiji Igoshi
Institution:Institute of Applied Biochemistry, The University of Tsukuba, Ibaraki-ken 300-31
Abstract:Syntheses of the key enzymes of the glyoxylate cycle, in Candida lipolytica, were highly repressed by glucose. Syntheses of the key enzymes of the methylcitric acid cycle were also slightly repressed by glucose but the degrees of repression in the syntheses of these enzymes were nearly equal to those of repression in the syntheses of several enzymes of the citric acid cycle. All enzyme syntheses repressed by glucose were derepressed during incubation with succinate as well as with n-alkanes: enzyme syntheses of the methylcitric acid cycle did not necessitate the addition of propionate or odd-carbon n-alkanes. The enzymes of the methylcitric acid cycle seem to be constitutive, similarly as those of the citric acid cycle.

In the parent strain, the respective enzyme levels of the cells grown on an odd-numbered n-alkane were similar to those of the cells grown on an even-numbered n-alkane. But in the mutant strain lacking 2-methylisocitrate lyase, the cells grown on the odd-numbered alkane contained aconitate hydratase, NADP-Iinked isocitrate dehydrogenase, isocitrate lyase, 2- methylcitrate synthase and 2-methylaconitate hydratase all at higher levels than the cells grown on the even-numbered alkane. Both the parent cells and the mutant cells grown on the same carbon source contained at individually similar levels of the following six enzymes; citrate synthase, NAD-linked isocitrate dehydrogenase, succinate dehydrogenase, fumarate hydratase, malate dehydrogenase, and malate synthase. The pleiotropic changes of enzyme activities in the mutant cells grown on the odd-numbered alkane seem to be ascribable to direct or indirect stimulation caused by threo-ds-2-methylisocitric acid accumulation.
Keywords:Saccharomyces cerevisiae  ergosterol  ethanol tolerance  sake yeast
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号