首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formation of l-Butyl-5-hydroxy-methylpyrrole-2-carboxaldehyde in the Maillard Reaction between Lactose and n-Butylamine
Authors:Hiromi Sonobe  Hiromichi Kato  Masao Fujimaki
Institution:Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
Abstract:A new mutant Shmr-001-1 has been isolated by treating showdomycin-resistant mutant Shmr-001 cells with N-methyl-N′-nitro-N-nitrosoguanidine. This mutant was resistant to high level of showdomycin, and took up practically no showdomycin and little pyrimidine nucleosides, and it showed different ability to take up purine nucleosides. Strains Shmr-001–1, Shmr-001, and K–12 (wild type) were compared: in susceptibility to showdomycin, in ability to take up the antibiotic and various nucleosides, on effects of other nucleosides on entry of particular nucleosides, and on kinetics of the entry of nucleosides and showdomycin. From these experiments, at least three different nucleoside transport systems were observed in Escherichia coli K–12 cells: the first system was common to adenine nucleosides, pyrimidine nucleosides, and showdomycin; the second system was common to adenine nucleosides, guanine nucleosides, inosine, pyrimidine nucleosides, and showdomycin; and the third system was common to adenine nucleosides, guanine nucleosides, and inosine. The first system was not observable in Shmr-001 cells. In Shmr-001–1 cells both the first and the second systems were no longer detectable but the third system was found to be active.
Keywords:green tea  liver injury  D-galactosamine" target="_blank">D-galactosamine  carbon tetrachloride  rat
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号