首页 | 本学科首页   官方微博 | 高级检索  
     


Type X collagen alterations in rachitic chick epiphyseal growth cartilage
Authors:A M Reginato  I M Shapiro  J W Lash  S A Jimenez
Affiliation:Department of Medicine, Thomas Jefferson University, Philadelphia 19107.
Abstract:We examined collagens of both normal and vitamin D-deficient chick epiphyseal growth cartilage. Special emphasis was placed on the study of Type X collagen, a recently described product of hypertrophic chondrocytes. Scanning electron microscopy of the epiphyseal growth cartilage of vitamin D-deficient chickens showed an enlarged growth cartilage with a disorganized extracellular matrix. The cartilage collagens were solubilized by proteolytic digestion and disulfide bond reduction of both normal and rachitic growth tissues. Sequential extraction with neutral salt and acetic acid buffers followed by pepsin digestion at 4 degrees C solubilized about 12% of normal tissues and about 7% of collagen from rachitic growth cartilage. Treatment of the pepsin-resistant collagens with neutral salt-dithiothreitol buffer under nondenaturing conditions and a subsequent pepsin digestion increased the yield of solubilized collagen to greater than 95% of the total tissue collagen. Results of the biochemical studies showed a marked increase in the relative proportion of Type X collagen (from 5.6 to 27.9%), a corresponding decrease in the proportions of Types II and IX collagens, and a moderate increase in Type XI collagen in rachitic cartilage. Amino acid analysis indicated that there were no differences in the Types II and X collagens of normal and rachitic cartilage. However, an abnormality in the relative proportions of the CNBr peptides of Type X collagen was detected in the rachitic cartilage. We suggest that the increase in collagen in the rachitic state may reflect increased levels of Type X collagen synthesis by cells in the hypertrophic region. It is likely that in rickets the overproduction of Type X collagen may be a compensatory mechanism by which the hypertrophic chondrocyte attempts to provide a maximum area of calcifiable matrix for the calcium-depleted serum.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号