Affiliation: | 1. Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA;2. Center for Ecology and Conservation, University of Exeter, Cornwall, UK Contribution: Data curation (supporting), Investigation (equal), Methodology (equal);3. Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA Contribution: Project administration (equal), Resources (equal), Supervision (equal), Writing - original draft (supporting), Writing - review & editing (supporting);4. Behavior, Ecology, Evolution & Systematics Section, School of Biological Sciences, Illinois State University, Normal, Illinois, USA Contribution: Conceptualization (equal), Funding acquisition (equal), Project administration (equal), Resources (equal), Supervision (equal), Writing - original draft (supporting), Writing - review & editing (supporting);5. Center for Ecology and Conservation, University of Exeter, Cornwall, UK School of Science, Western Sydney University, Richmond, New South Wales, Australia Contribution: Conceptualization (equal), Funding acquisition (equal), Project administration (equal), Resources (equal), Supervision (equal), Writing - original draft (supporting), Writing - review & editing (supporting) |
Abstract: | Nuptial food gift provisioning by males to females at mating is a strategy in many insects that is thought to be shaped by sexual conflict or sexual selection, as it affords males access to a female's physiology. While males often attempt to use these gifts to influence female behaviour to their own advantage, females can evolve counter mechanisms. In decorated crickets, the male's nuptial gift comprises part of the spermatophore, the spermatophylax, the feeding on which deters the female from prematurely terminating sperm transfer. However, ingested compounds in the spermatophylax and attachment of the sperm-containing ampulla could further influence female physiology and behaviour. We investigated how mating per se and these two distinct routes of potential male-mediated manipulation influence the female transcriptomic response. We conducted an RNA sequencing experiment on gut and head tissues from females for whom nuptial food gift consumption and receipt of an ejaculation were independently manipulated. In the gut tissue, we found that females not permitted to feed during mating exhibited decreased overall gene expression, possibly caused by a reduced gut function, but this was countered by feeding on the spermatophylax or a sham gift. In the head tissue, we found only low numbers of differentially expressed genes, but a gene co-expression network analysis revealed that ampulla attachment and spermatophylax consumption independently induce distinct gene expression patterns. This study provides evidence that spermatophylax feeding alters the female post-mating transcriptomic response in decorated crickets, highlighting its potential to mediate sexual conflict in this system. |