首页 | 本学科首页   官方微博 | 高级检索  
     


The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation
Authors:Kristine C. Rustad  Victor W. WongGeoffrey C. Gurtner
Affiliation:Department of Surgery, Stanford University, Stanford, California, USA
Abstract:Historically, great efforts have been made to elucidate the biochemical pathways that direct the complex process of wound healing; however only recently has there been recognition of the importance that mechanical signals play in the process of tissue repair and scar formation. The body's physiologic response to injury involves a dynamic interplay between mechanical forces and biochemical cues which directs a cascade of signals leading ultimately to the formation of fibrotic scar. Fibroblasts are a highly mechanosensitive cell type and are also largely responsible for the generation of the fibrotic matrix during scar formation and are thus a critical player in the process of mechanotransduction during tissue repair. Mechanotransduction is initiated at the interface between the cell membrane and the extracellular matrix where mechanical signals are first translated into a biochemical response. Focal adhesions are dynamic multi-protein complexes through which the extracellular matrix links to the intracellular cytoskeleton. These focal adhesion complexes play an integral role in the propagation of this initial mechanical cue into an extensive network of biochemical signals leading to widespread downstream effects including the influx of inflammatory cells, stimulation of angiogenesis, keratinocyte migration, fibroblast proliferation and collagen synthesis. Increasing evidence has demonstrated the importance of the biomechanical milieu in healing wounds and suggests that an integrated approach to the discovery of targets to decrease scar formation may prove more clinically efficacious than previous purely biochemical strategies.
Keywords:ECM, extracellular matrix   ERK, extracellular signal-regulated kinase   FAK, focal adhesion kinase   FPCL, fibroblast-populated collagen lattice   ILK, integrin-linked kinase   KO, knockout   MCP-1, monocyte chemoattractant protein-1   NPWT, negative pressure wound therapy   Pyk2, proline-rich tyrosine kinase 2
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号