首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Clines with partial panmixia in an unbounded unidimensional habitat
Authors:Thomas Nagylaki
Institution:
  • Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, United States
  • Abstract:In geographically structured populations, global panmixia can be regarded as the limiting case of long-distance migration. The effect of incorporating partial panmixia into diallelic single-locus clines maintained by migration and selection in an unbounded unidimensional habitat is investigated. Migration and selection are both weak. The former is homogenous and isotropic; the latter has no dominance. The population density is uniform. A simple, explicit formula is derived for the maximum value β0 of the scaled panmictic rate β for which a cline exists. The former depends only on the asymptotic values of the scaled selection coefficient. If the two alleles have the same average selection coefficient, there exists a unique, globally asymptotically stable cline for every β≥0. Otherwise, if ββ0, the allele with the greater average selection coefficient is ultimately fixed. If β<β0, there exists a unique, globally asymptotically stable cline, and some polymorphism is retained even infinitely far from its center. The gene frequencies at infinity are determined by a continuous-time, two-deme migration-selection model. An explicit expression is deduced for the monotone cline in a step-environment. These results differ fundamentally from those for the classical cline without panmixia.
    Keywords:Geographical structure  Spatial structure  Population structure  Subdivided populations  Migration  Long-distance migration
    本文献已被 ScienceDirect PubMed 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号