首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO Gene
Authors:Chris Church  Sheena Lee  Eleanor A L Bagg  James S McTaggart  Robert Deacon  Thomas Gerken  Angela Lee  Lee Moir  Jasmin Mecinovi&#x;  Mohamed M Quwailid  Christopher J Schofield  Frances M Ashcroft  and Roger D Cox
Institution:Chris Church, Sheena Lee, Eleanor A. L. Bagg, James S. McTaggart, Robert Deacon, Thomas Gerken, Angela Lee, Lee Moir, Jasmin Mecinovi?, Mohamed M. Quwailid, Christopher J. Schofield, Frances M. Ashcroft, and Roger D. Cox
Abstract:Human FTO gene variants are associated with body mass index and type 2 diabetes. Because the obesity-associated SNPs are intronic, it is unclear whether changes in FTO expression or splicing are the cause of obesity or if regulatory elements within intron 1 influence upstream or downstream genes. We tested the idea that FTO itself is involved in obesity. We show that a dominant point mutation in the mouse Fto gene results in reduced fat mass, increased energy expenditure, and unchanged physical activity. Exposure to a high-fat diet enhances lean mass and lowers fat mass relative to control mice. Biochemical studies suggest the mutation occurs in a structurally novel domain and modifies FTO function, possibly by altering its dimerisation state. Gene expression profiling revealed increased expression of some fat and carbohydrate metabolism genes and an improved inflammatory profile in white adipose tissue of mutant mice. These data provide direct functional evidence that FTO is a causal gene underlying obesity. Compared to the reported mouse FTO knockout, our model more accurately reflects the effect of human FTO variants; we observe a heterozygous as well as homozygous phenotype, a smaller difference in weight and adiposity, and our mice do not show perinatal lethality or an age-related reduction in size and length. Our model suggests that a search for human coding mutations in FTO may be informative and that inhibition of FTO activity is a possible target for the treatment of morbid obesity.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号