首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue essential fatty acid composition and competitive response to dietary manipulations in white bass (Morone chrysops), striped bass (M. saxatilis) and hybrid striped bass (M. chrysopsxM. saxatilis)
Authors:Harel Moti  Place Allen R
Affiliation:The Center of Marine Biotechnology, University of Maryland, 701 East Pratt St., Baltimore, MD 21202, USA. mharel@advancedbionutrition.com
Abstract:The effects of wide changes in dietary levels of docosahexaenoic (DHA) or arachidonic (ArA) acids on growth, survival and fatty acid composition in body tissues of Morone larvae were examined. White bass (WB, Morone chrysops), striped bass (SB, Morone saxatilis) and sunshine hybrid bass (HSB, M. chrysopsxM. saxatilis) larvae (day 24-46) were fed Artemia nauplii enriched with algal sources of varying proportions of DHA and ArA (from 0 to over 20% of total fatty acids). WB larvae fed DHA-deficient Artemia diet retarded over 50% of their potential growth, however, increasing dietary DHA/ArA ratios were associated with a significant growth improvement. The highest proportion of polyunsaturated fatty acids was found in WB neural tissue (approx. 50% of total fatty acids), while HSB neural tissue contained the highest proportion of saturated fatty acids (approx. 35% of total fatty acids). Within the neural tissues of all Morone larvae, both DHA and ArA were generally the most dominant as well as the most responding fatty acids to dietary manipulations (except in WB fed DHA or ArA deficient diets). HSB neural tissue was particularly efficient in retaining a significant amount of DHA in the face of dietary deficiency. However, WB neural tissue was the most responsive to dietary increase in DHA, accumulating a significantly higher amount of DHA (P<0.05) than SB or HSB. Results demonstrate significant differences in fatty acid composition and growth responsiveness to dietary manipulations between Morone larvae species and within specific tissues. WB weight gain and neural tissue composition was affected most by dietary changes in both DHA and ArA whereas SB and HSB tissue compositions were generally less affected by dietary manipulations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号