首页 | 本学科首页   官方微博 | 高级检索  
     


Conformation and orientation of regulatory peptides on lipid membranes. Key to the molecular mechanism of receptor selection
Authors:D F Sargent  J W Bean  R Schwyzer
Affiliation:Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology, Zürich, Switzerland.
Abstract:The reaction of regulatory peptides with their membrane-bound receptors often occurs via a membrane-associated state of the peptide. From infrared studies on thin lipid films, we have shown that several ligands of the opioid kappa receptor and the neurokinin NK-1 receptor insert their message segments as an alpha-helix, more or less perpendicularly, into the membrane. The binding parameters for these membrane-associated states were determined from the capacitance minimization potential of lipid bilayers. A theory has been developed to account for the observed binding constants and the preferred conformation and orientation of these peptides. In contrast to the kappa and NK-1 receptors, ligands of the opioid mu and delta, and the neurokinin NK-2 and NK-3 receptors, are predicted not to form the inserted alpha-helical structure. A selection between the mu and delta (or NK-2 and NK-3) receptors appears to be made on the basis of an electrostatic gradient near the membrane surface. The molecular mechanism of receptor selection thus appears to be based to a large extent on the membrane-induced compartmentalization of ligands for the different receptors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号