首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cumulus cells accelerate aging of mouse oocytes by secreting a soluble factor(s)
Authors:Qiao Tian-Wu  Liu Na  Miao De-Qiang  Zhang Xia  Han Dong  Ge Li  Tan Jing-He
Institution:College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, PR China.
Abstract:Control of oocyte aging in vitro is important for both human-assisted reproduction and animal embryo technologies because fertilization or artificial activation of aged oocytes results in abnormal development. Interactions between somatic and germ cells are also an important issue in current biological research. The role of cumulus cells (CCs) in maturation, ovulation, and fertilization of oocytes has been extensively studied, yet little is known about their role in oocyte aging. Although our previous study has shown that CCs accelerate the aging progression of mouse oocytes, the mechanism by which CCs accelerate oocyte aging is unknown. In this study, cumulus-denuded mouse oocytes (DOs) were co-cultured with cumulus-oocyte complexes (COCs) or CC monolayer or cultured in medium conditioned with these cells and changes in the susceptibility to activating stimuli and in MPF activity of oocytes were evaluated after different aging treatments. The results showed that culture with or in medium conditioned with COCs or CC monolayer promoted activation of DOs, indicating that a soluble factor is responsible for the aging-promoting effect. The in vivo and in vitro-matured DOs did not differ in responsiveness to the aging-promoting factor (APF). Heat shock did not accelerate oocyte aging unless in the presence of CCs. The production of APF was not affected by the age or maturation system of COCs, but increased with their density and duration of culture. The results strongly suggest that CCs accelerated oocyte aging by secreting a soluble APF into the medium. Further analysis showed that the APF was heat labile but stable to freezing, it had a threshold effective concentration and can be depleted by DOs.
Keywords:aging  oocyte  cumulus cells  soluble factor
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号