A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2 |
| |
Authors: | Lee Min Woo Lu Hua Jung Ho Won Greenberg Jean T |
| |
Affiliation: | Molecular Genetics and Cell Biology Department, The University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA. |
| |
Abstract: | Effector proteins injected by the pathogenic bacteria Pseudomonas syringae into plants can have profound effects on the pathogen-host interaction due to their efficient recognition by plants and the subsequent triggering of defenses. The AvrRpt2 effector triggers strong local and systemic defense (called systemic acquired resistance [SAR]) responses in Arabidopsis thaliana plants that harbor a functional RPS2 gene that encodes an R protein in the coiled-coil, nucleotide-binding domain, leucine-rich repeat class. The newly identified win3-T mutant shows greatly reduced resistance to P syringae carrying avrRpt2. In win3-T plants, RIN4 cleavage, an early AvrRpt2-induced event, is normal. However, salicylic acid accumulation is compromised, as is SAR induction and the local hypersensitive cell death response after infection by P syringae carrying avrRpt2. WIN3 encodes a member of the firefly luciferase protein superfamily. Expression of WIN3 at an infection site partially requires PAD4, a protein known to play a quantitative role in RPS2-mediated signaling. WIN3 expression in tissue distal to an infection site requires multiple salicylic acid regulatory genes. Finally, win3-T plants show modestly increased susceptibility to virulent P syringae and modestly reduced SAR in response to P. syringae carrying avrRpm1. Thus, WIN3 is a key element of the RPS2 defense response pathway and a basal and systemic defense component. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|