首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Neutral salt effects on the velocity and activation volume of the lactate dehydrogenase reaction: Evidence for enzyme hydration changes during catalysis
Authors:George N Somero  Michael Neubauer  Philip S Low
Institution:1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093 USA;2. Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 USA
Abstract:The effects of different neutral salts on the maximal velocity (V) and activation volume (ΔV3) of the M4-lactate dehydrogenase reaction were studied to determine the mechanistic basis of the inhibitory effects of these salts. For salting-in salts (which increase protein group solubility), increasing salt concentrations led to reductions in V and increases in ΔV3, with the order of salt effectiveness following the Hofmeister (lyotropic) series: KSCN > KI > KBr. A 50% reduction in V was associated with an approximately 17 cm3 mol?1 increase in ΔV3 for different concentrations of the same salt and for equal concentrations of different salting-in salts. Salting-out salts were also inhibitory, but no uniform correlation between changes in V and ΔV3 was observed. The strongly salting-out salt KF decreased ΔV3 at all concentrations. The weaker salting-out salt K2SO4 increased ΔV3 at concentrations below 0.1 m and decreased ΔV3 at higher concentrations. KCl increased ΔV3 as the salt concentration was raised to approximately 0.2 m; further increases in KCl concentration were without effect on ΔV3. The rate and volume effects of these neutral salts, especially the highly regular covariation in V and ΔV3 found for salting-in salts, seem difficult to explain in terms of salt-induced changes in the geometry of the active site. We propose instead that these salt effects can all be explained in terms of the energy and volume changes which accompany transfers of protein groups (amino acid side chains and peptide backbone linkages) between the hydrophobic interior of the enzyme and the enzyme-water interface during catalytic conformational changes.
Keywords:To whom correspondence should be sent  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号