首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Glycolate synthesis by intact chloroplasts: Studies with inhibitors of photophosphorylation
Authors:GH Krause  SW Thorne  GH Lorimer
Institution:1. Department of Environmental Biology, Research School of Biological Sciences, The Australian National University, Canberra Australia;2. CSIRO, Division of Plant Industry, Canberra, Australia
Abstract:Intact spinach chloroplasts, capable of evolving O2 in response to CO2 at rates greater than 70 μmol/h · mg of chlorophyll, synthesize glycolate from added dihydroxyacetone phosphate, ribose 5-phosphate, or xylulose 5-phosphate, when illuminated in the presence of O2. The synthesis of glycolate from these compounds is dependent upon photophosphorylation and is inhibited by each of the three classes of photophosphorylation inhibitors Izawa, S., and Good, N. E. (1972) in Methods in Enzymology, Vol. 24, Part B, pp. 355–377)]: an uncoupler, carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP), an energy transfer inhibitor, Dio-9, and a phosphate analog, arsenate. Neither arsenate nor Dio-9 causes the collapse of the light-generated proton gradient between thylakoid and stroma compartments of the chloroplasts, so that the inhibition of glycolate synthesis by these compounds cannot be ascribed to an inactivation of Calvin cycle enzymes thought to be associated with the collapse of such a proton gradient. The dependency of glycolate synthesis upon photophosphorylation indicates that an ATP-consuming reaction(s) is involved in the conversion of the substrates (triose and pentose monophosphates) to glycolate. The formation of dihydroxyethylthiamine pyrophosphate, the “active glycolaldehyde” intermediate of the transketolase reaction, from triose and pentose monophosphates has no known requirements for ATP. On the other hand, the conversion of both triose and pentose monophosphates to ribulose 1,5-bisphosphate, the substrate for the ribulose 1,5-bisphosphate oxygenase reaction, requires ATP. It is concluded that glycolate synthesis by intact isolated chloroplasts is primarily the result of ribulose 1,5-bisphosphate oxygenase activity. No substantial role in glycolate synthesis can be attributed to the oxidation of dihydroxyethylthiamine pyrophosphate, the intermediate of the transketolase reaction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号