首页 | 本学科首页   官方微博 | 高级检索  
     


Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks
Authors:Jones J M  Nakai H
Affiliation:Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20007, USA.
Abstract:Escherichia coli PriA is a primosome assembly protein with 3' to 5' helicase activity whose apparent function is to promote resumption of DNA synthesis following replication-fork arrest. Here, we describe how initiation of helicase activity on DNA forks is influenced by both fork structure and by single-strand DNA-binding protein. PriA could recognize and unwind forked substrates where one or both arms were primarily duplex, and PriA required a small (two bases or larger) single-stranded gap at the fork in order to initiate unwinding. The helicase was most active on substrates with a duplex lagging-strand arm and a single-stranded leading-strand arm. On this substrate, PriA was capable of translocating on either the leading or lagging strands to unwind the duplex ahead of the fork or the lagging-strand duplex, respectively. Fork-specific binding apparently orients the helicase domain to unwind the lagging-strand duplex. Binding of single-strand-binding protein to forked templates could inhibit unwinding of the duplex ahead of the fork but not unwinding of the lagging-strand duplex or translocation on the lagging-strand template. While single-strand-binding protein could inhibit binding of PriA to the minimal, unforked DNA substrates, it could not inhibit PriA binding to forked substrates. In the cell, single-strand-binding protein and fork structure may direct PriA helicase to translocate along the lagging-strand template of forked structures such that the primosome is specifically assembled on that DNA strand.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号