首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Postnatal long bone growth in terrestrial placental mammals: Allometry,life history,and organismal traits
Authors:Brandon M Kilbourne  Peter J Makovicky
Institution:1. Department of Geology, Field Museum of Natural History, Chicago, Illinois 60605;2. Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois 60637
Abstract:The ontogenetic allometry of long bone proportions is poorly understood in Mammalia. It has previously been suggested that during mammalian ontogeny long bone proportions grow more slender (positive allometry; length ∝ circumference>1.0), although this conclusion was based upon data from a few small‐bodied taxa. It remains unknown how ontogenetic long bone allometry varies across Mammalia in terms of both taxonomy and body size. We collected long bone length and circumference data for ontogenetic samples of 22 species of mammals spanning six major clades and three orders of magnitude in body mass. Using reduced major axis bivariate regressions to compare bone length to circumference, we found that isometry and positive allometry are the most widespread patterns of growth across mammals. Negative allometry (i.e., bones growing more robust during ontogeny) occurs in mammals but is largely restricted to cetartiodactyls. Using regression slope as a proxy for long bone allometry, we compared long bone allometry to life history and organismal traits. Neonatal body mass, adult body mass, and growth rate have a negative relationship with long bone allometry. At an adult mass of roughly 15–20 kg, long bone growth shifts from positive allometry to mainly isometry and negative allometry. There were no significant relationships between ontogenetic long bone allometry and either cursoriality or basal metabolic rate. J. Morphol. © 2012 Wiley Periodicals, Inc.
Keywords:long bones  allometry  ontogeny  mammals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号