Abstract: | The ability of Listeria monocytogenes to tolerate low-pH environments is of particular importance because the pathogen encounters such environments in vivo, both during passage through the stomach and within the macrophage phagosome. In our study, L. monocytogenes was shown to exhibit a significant adaptive acid tolerance response following a 1-h exposure to mild acid (pH 5.5), which is capable of protecting cells from severe acid stress (pH 3.5). Susceptibility to pH 3.5 acid is growth phase dependent. Stationary-phase Listeria cultures are naturally resistant to the challenge pH (pH 3.5), while exponential-phase cultures require adaptation at pH 5.5 to induce acid tolerance. Adaptation requires protein synthesis, since treatment with chloramphenicol prevents the development of acid tolerance. Induction of the acid tolerance response also protects L. monocytogenes against the effect of other environmental stresses. Acid-adapted cells demonstrate increased tolerance toward thermal stress, osmotic stress, crystal violet, and ethanol. Following prolonged exposure of L. monocytogenes to pH 3.5, we isolated mutants which constitutively demonstrate increased acid tolerance at all stages of the growth cycle. These mutants do not display full acid tolerance, but their resistance to low pH can be further increased following adaptation to mild-acid conditions. The mutants demonstrated increased lethality for mice relative to that of the wild type when inoculated by the intraperitoneal route. When administered as lower inocula, the mutants reached higher levels in the spleens of infected mice than did the wild type. The data suggest that low-pH conditions may have the potential to select for L. monocytogenes mutants with increased natural acid tolerance and increased virulence. |