首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Na+-K+-ATPase properties in rat heart and skeletal muscle 3 mo after coronary artery ligation.
Authors:D J Barr  H J Green  D S Lounsbury  J W E Rush  J Ouyang
Institution:Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Abstract:This study was designed to determine whether chronic heart failure (CHF) results in changes in Na(+)-K(+)-ATPase properties in heart and skeletal muscles of different fiber-type composition. Adult rats were randomly assigned to a control (Con; n = 8) or CHF (n = 8) group. CHF was induced by ligation of the left main coronary artery. Examination of Na(+)-K(+)-ATPase activity (means +/- SE) 12 wk after the ligation measured, using the 3-O-methylfluorescein phosphatase assay (3-O-MFPase), indicated higher (P < 0.05) levels in soleus (Sol) (250 +/- 13 vs. 179 +/- 18 nmol.mg protein(-1).h(-1)) and lower (P < 0.05) levels in diaphragm (Dia) (200 +/- 12 vs. 272 +/- 27 nmol.mg protein(-1).h(-1)) and left ventricle (LV) (760 +/- 62 vs. 992 +/- 16 nmol.mg protein(-1).h(-1)) in CHF compared with Con, respectively. Na(+)-K(+)-ATPase protein content, measured by the (3)H]ouabain binding technique, was higher (P < 0.05) in white gastrocnemius (WG) (166 +/- 12 vs. 135 +/- 7.6 pmol/g wet wt) and lower (P < 0.05) in Sol (193 +/- 20 vs. 260 +/- 8.6 pmol/g wet wt) and LV (159 +/- 10 vs. 221 +/- 10 pmol/g wet wt) in CHF compared with Con, respectively. Isoform content in CHF, measured by Western blot techniques, showed both increases (WG; P < 0.05) and decreases (Sol; P < 0.05) in alpha(1). For alpha(2), only increases red gastrocnemius (RG), Sol, and Dia; P < 0.05] occurred. The beta(2)-isoform was decreased (LV, Sol, RG, and WG; P < 0.05) in CHF, whereas the beta(1) was both increased (WG and Dia; P < 0.05) and decreased (Sol and LV; P < 0.05). For beta(3), decreases (P < 0.05) in RG were observed in CHF, whereas no differences were found in Sol and WG between CHF and Con. It is concluded that CHF results in alterations in Na(+)-K(+)-ATPase that are muscle specific and property specific. Although decreases in Na(+)-K(+)-ATPase content would appear to explain the lower 3-O-MFPase in the LV, such does not appear to be the case in skeletal muscles where a dissociation between these properties was observed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号