首页 | 本学科首页   官方微博 | 高级检索  
     


A systems biology approach to dissect the contribution of brassinosteroid and auxin hormones to vascular patterning in the shoot of Arabidopsis thaliana
Authors:Norma Fàbregas  Marta Iba?es  Ana I Ca?o-Delgado
Affiliation:1.Molecular Genetics Department; Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB); Barcelona, Spain;2.Departament Estructura i Constituents de la Matèria; Universitat de Barcelona; Barcelona, Spain
Abstract:Systems biology can foster our understanding of hormonal regulation of plant vasculature. One such example is our recent study on the role of plant hormones brassinosteroids (BRs) and auxin in vascular patterning of Arabidopsis thaliana (Arabidopsis) shoots. By using a combined approach of mathematical modelling and molecular genetics, we have reported that auxin and BRs have complementary effects in the formation of the shoot vascular pattern. We proposed that auxin maxima, driven by auxin polar transport, position vascular bundles in the stem. BRs in turn modulate the number of vascular bundles, potentially by controlling cell division dynamics that enhance the number of provascular cells. Future interdisciplinary studies connecting vascular initiation at the shoot apex with the established vascular pattern in the basal part of the plant stem are now required to understand how and when the shoot vascular pattern emerges in the plant.Key words: Arabidopsis, vascular, auxin, brassinosteroids, mathematical model, computer simulationsThe plant vascular system is responsible for the long-distance transport of water, solutes and molecules throughout the plant, being essential for plant growth and development. It is formed by two different functional tissues: the xylem, which transports water from roots to aerial organs, and the phloem, through which nutrients and photosynthetic products and signaling molecules are transported.During embryogenesis, the vasculature is characterized as an undifferentiated procambial tissue in the innermost part of the plant embryo.1 Later in development, the procambium (i.e., a group of pluripotent stem cells2) begins to divide and differentiate into xylem and phloem tissues through oriented cell divisions. In the shoot, procambium generates xylem tissue centripetally and phloem tissue centrifugally, driving the formation of collateral vascular bundles around it.3,4 In the inflorescence stem of the model plant Arabidopsis, the radial pattern of the vasculature exhibits a periodic organization made by the alternation of vascular bundles and interfascicular fibers, which altogether form the vascular ring (Fig. 1A).Open in a separate windowFigure 1Vascular patterning in Arabidopsis shoot inflorescence stem. (A) Radial section of DR5::GUS expression at the base of the inflorescence stem in Arabidopsis Col-0 plants. (B) Computer simulation result for auxin concentration ([Auxin]) in arbitrary units (a.u.) along a ring of cells; x and y stand for spatial coordinates. Auxin is distributed in maxima which, according to the model hypothesis, position vascular bundles. (C) Longitudinal section of Arabidopsis Col-0 wild-type plant at the most apical zone, immediately below the shoot apical meristem. Arrows point to xylem strains coming from the lateral organs.Previous studies have documented the importance of plant hormones such as auxin and BRs in vascular cell differentiation and patterning.5 Defective polar auxin transport distorts shoot vascular patterning6,7 and BR loss-of-function mutants exhibit few vascular bundles.8,9 But how do these hormones control shoot vascular patterning? In order to answer this question, we used both quantitative measurements of vascular phenotypes and computational modeling.10
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号