首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A molecular phylogeny of the genus Alloteropsis (Panicoideae, Poaceae) suggests an evolutionary reversion from C4 to C3 photosynthesis
Authors:Ibrahim Douglas G  Burke Terry  Ripley Brad S  Osborne Colin P
Institution:1 Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
2 Botany Department, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
Abstract:Background and Aims: The grass Alloteropsis semialata is the only plant species withboth C3 and C4 subspecies. It therefore offers excellent potentialas a model system for investigating the genetics, physiologyand ecological significance of the C4 photosynthetic pathway.Here, a molecular phylogeny of the genus Alloteropsis is constructedto: (a) confirm the close relationship between the C3 and C4subspecies of A. semialata; and (b) infer evolutionary relationshipsbetween species within the Alloteropsis genus. Methods: The chloroplast gene ndhF was sequenced from 12 individuals,representing both subspecies of A. semialata and all four ofthe other species in the genus. ndhF sequences were added tothose previously sequenced from the Panicoideae, and used toconstruct a phylogenetic tree. Key Results: The phylogeny confirms that the two subspecies of A. semialataare among the most recently diverging lineages of C3 and C4taxa currently recognized within the Panicoideae. Furthermore,the position of the C3 subspecies of A. semialata within theAlloteropsis genus is consistent with the hypothesis that itsphysiology represents a reversion from C4 photosynthesis. Thedata point to a similar evolutionary event in the Panicum stenodesP.caricoidesP. mertensii clade. The Alloteropsis genusis monophyletic and occurs in a clade with remarkable diversityof photosynthetic biochemistry and leaf anatomy. Conclusions: These results confirm the utility of A. semialata as a modelsystem for investigating C3 and C4 physiology, and provide moleculardata that are consistent with reversions from C4 to C3 photosynthesisin two separate clades. It is suggested that further phylogeneticand functional investigations of the Alloteropsis genus andclosely related taxa are likely to shed new light on the mechanismsand intermediate stages underlying photosynthetic pathway evolution.
Keywords:Alloteropsis semialata  Panicoideae  Poaceae  ndhF  C4 photosynthesis  C3 photosynthesis  photosynthetic pathway evolution  molecular phylogeny
本文献已被 PubMed Oxford(免费) 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号