首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Uptake of the beta-lactam precursor alpha-aminoadipic acid in Penicillium chrysogenum is mediated by the acidic and the general amino acid permease
Authors:Trip Hein  Evers Melchior E  Kiel Jan A K W  Driessen Arnold J M
Institution:Department of Microbiology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands.
Abstract:External addition of the beta-lactam precursor alpha-aminoadipic acid to the filamentous fungus Penicillium chrysogenum leads to an increased intracellular alpha-aminoadipic acid concentration and an increase in penicillin production. The exact route for alpha-aminoadipic acid uptake is not known, although the general amino acid and acidic amino acid permeases have been implicated in this process. Their corresponding genes, PcGAP1 and PcDIP5, of P. chrysogenum were cloned and functionally expressed in a mutant of Saccharomyces cerevisiae (M4276) in which the acidic amino acid and general amino acid permease genes (DIP5 and GAP1, respectively) are disrupted. Transport assays show that both PcGap1 and PcDip5 mediated the uptake of alpha-aminoadipic acid, although PcGap1 showed a higher affinity for alpha-aminoadipic acid than PcDip5 (K(m) values, 230 and 800 microM, respectively). Leucine strongly inhibits alpha-aminoadipic acid transport via PcGap1 but not via PcDip5. This difference was exploited to estimate the relative contribution of each transport system to the alpha-aminoadipic acid flux in beta-lactam-producing P. chrysogenum. The transport measurements demonstrate that both PcGap1 and PcDip5 contribute to the alpha-aminoadipic acid flux.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号