Abstract: | Escherichia coli K12 cells grown at higher temperatures and then subjected to lower temperatures produce fatty acids with higher unsaturated/saturated ratios than cells completely adapted to the lower temperatures (Okuyama et al. (1982) J. Biol. Chem. 257, 4812-4817). This hyper-response was not an artefact of chloramphenicol treatment and was observed when the shift-down was more than 20 degrees C in the cells grown at either 40 degrees C or 35 degrees C. In contrast, cells grown at either 25 degrees C or 30 degrees C showed no appreciable hyper-response in terms of unsaturated/saturated ratio on temperature shifts to as low as 10 degrees C. By combining shift-down and shift-up experiments, we could show the presence of different types of temperature dependency in the fatty acid-synthesizing systems of cells grown at various temperatures. Contrary to wild-type cells which synthesized mainly cis-vaccenate on down-shift to 10 degrees C, a mutant strain lacking beta-ketoacyl acyl-carrier protein synthase II synthesized more palmitoleate (16:1) and less palmitate at 10 degrees C than at 40 degrees C. The average chain lengths of saturated and unsaturated fatty acids also changed, but differently, between the mutant and wild-type cells on shifts of temperature. Thus, the mutant strain has a temperature-dependent fatty acid-synthesizing system qualitatively different from that seen in a wild-type strain. |