首页 | 本学科首页   官方微博 | 高级检索  
   检索      


No evidence from FTIR difference spectroscopy that aspartate-170 of the D1 polypeptide ligates a manganese ion that undergoes oxidation during the S0 to S1, S1 to S2, or S2 to S3 transitions in photosystem II
Authors:Debus Richard J  Strickler Melodie A  Walker Lee M  Hillier Warwick
Institution:Department of Biochemistry, University of California, Riverside, California 92521-0129, USA. richard.debus@ucr.edu
Abstract:On the basis of mutagenesis and X-ray crystallographic studies, Asp170 of the D1 polypeptide is widely believed to ligate the (Mn)4 cluster that is located at the catalytic site of water oxidation in photosystem II. Recent proposals for the mechanism of water oxidation postulate that D1-Asp170 ligates a Mn ion that undergoes oxidation during one or more of the S0 --> S1, S1 --> S2, and S2 --> S3 transitions. To test these hypotheses, we have compared the FTIR difference spectra of the individual S state transitions in wild-type* PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 with those in D1-D170H mutant PSII particles. Remarkably, our data show that the D1-D170H mutation does not significantly alter the mid-frequency regions (1800-1000 cm(-1)) of any of the FTIR difference spectra. Therefore, we conclude that the oxidation of the (Mn)4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Asp170 during the S0 --> S1, S1 --> S2, or S2 --> S3 transitions. The simplest explanation for these data is that the Mn ion that is ligated by D1-Asp170 does not increase its charge or oxidation state during any of these S state transitions. These data have profound implications for the mechanism of water oxidation. Either (1) the oxidation of the Mn ion that is ligated by D1-Asp170 occurs only during the transitory S3 --> S4 transition and serves as the critical step in the ultimate formation of the O-O bond or (2) the oxidation increments and O2 formation chemistry that occur during the catalytic cycle involve only the remaining Mn3Ca portion of the Mn4Ca cluster. Our data also show that, if the increased positive charge on the (Mn)4 cluster that is produced during the S1 --> S2 transition is delocalized over the (Mn)4 cluster, it is not delocalized onto the Mn ion that is ligated by D1-Asp170.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号