首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity
Authors:Marco Eugenio  Wedlich-Soldner Roland  Li Rong  Altschuler Steven J  Wu Lani F
Institution:Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Abstract:Diverse cell types require the ability to maintain dynamically polarized membrane-protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that a balance of diffusion, directed transport, and endocytosis was sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured endocytosis rates and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step toward understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号