首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Invertase reversibly immobilized onto polyethylenimine-grafted poly(GMA–MMA) beads for sucrose hydrolysis
Authors:M Yakup Ar&#x;ca  Gülay Bayramolu
Institution:

Biochemical Processing and Biomaterial Research Laboratory, Faculty of Science, K?r?kkale University, 71450 Yah?ihan-K?r?kkale, Turkey

Abstract:The epoxy group containing poly(glycidyl methacrylate-co-methylmethacrylate) poly(GMA–MMA) beads were prepared by suspension polymerisation and the beads surface were grafted with polyethylenimine (PEI). The PEI-grafted beads were then used for invertase immobilization via adsorption. The immobilization of enzyme onto the poly(GMA–MMA)–PEI beads from aqueous solutions containing different amounts of invertase at different pH was investigated in a batch system. The maximum invertase immobilization capacity of the poly(GMA–MMA)–PEI beads was about 52 mg/g. It was shown that the relative activity of immobilized invertase was higher then that of the free enzyme over broader pH and temperature ranges. The Michaelis constant (Km) and the maximum rate of reaction (Vmax) were calculated from the Lineweaver–Burk plot. The Km and Vmax values of the immobilized invertase were larger than those of the free enzyme. The immobilized enzyme had a long-storage stability (only 6% activity decrease in 2 months) when the immobilized enzyme preparation was dried and stored at 4 °C while under wet condition 43% activity decrease was observed in the same period. After inactivation of enzyme, the poly(GMA–MMA)–PEI beads can be easily regenerated and reloaded with the enzyme for repeated use.
Keywords:Invertase  Immobilized enzyme  Affinity beads  Adsorption  Enzyme reactor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号