首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression, purification, and physicochemical characterization of a recombinant Yersinia protein tyrosine phosphatase.
Authors:Z Y Zhang  J C Clemens  H L Schubert  J A Stuckey  M W Fischer  D M Hume  M A Saper  J E Dixon
Institution:Department of Biological Chemistry, University of Michigan, Ann Arbor 48109.
Abstract:The Yersinia protein tyrosine phosphatase (PTPase) Yop51, a C235R point mutation (Yop51*), and a protein lacking the first 162 amino acids at the NH2 terminus (Yop51*delta 162) have been overexpressed in Escherichia coli and purified to homogeneity through the use of CM Sephadex C25 cation exchange chromatography followed by Sephadex G-100 gel filtration. Greater than 50 mg of homogeneous Yop51* and Yop51*delta 162 can be obtained from a single liter of bacterial culture, whereas the same procedure yields only 5 mg of pure Yop51. Large, diffraction-quality crystals have been obtained for Yop51*delta 162. Size exclusion chromatography, sedimentation equilibrium, and enzyme concentration dependence experiments have established that the Yersinia PTPases exist and function as monomers in solution. Yop51 and Yop51* display identical UV, CD, and fluorescence spectra and have identical kinetic and structural stability properties. These full-length Yersinia PTPases have 31% alpha-helix, an emission maximum of 342 nm, a turn-over number of 1200 s-1 at pH 5.0, 30 degrees C, and an unfolding delta G value of 6 kcal/mol at 25 degrees C. Yop51*delta 162 has very similar kinetic and fluorescence characteristics to the full-length molecules, whereas its CD and UV spectra show noticeable differences due to the elimination of 162 NH2-terminal residues. The Yersinia PTPases are by far the most active PTPases known, and their kinetic parameters are extremely sensitive to the ionic strength of reaction medium.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号