首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biosynthetic approach to the structure of F1-ATPase (BF1 factor) from Micrococcus lysodeikticus membranes: in vivo labeling of the polypeptides and study of their relationship
Authors:Carmen Muñoz  Emilio Muñoz
Institution:Unidad de Biomembranas, Instituto de Inmunología y Biología Microbiana, Velázquez, 144, Madrid-6, Spain
Abstract:The F1-ATPase or BF1 factor was purified from Micrococcus lysodeikticus substrain B grown in a synthetic medium in the presence of tritiated amino acids. When analyzed in sodium dodecyl sulfate-7% polyacrylamide gels, the fresh purified preparation contained α, β, γ subunits (referred as the intrinsic subunits) and two other polypeptides (designated as X and component of relative mobility 1.0) whose status as subunits remains to be established. This overall polypeptide composition was similar to that of the F1-ATPase isolated from the same strain grown in complex medium (J. Carreira, J. M. Andreu, M. Nieto, and E. Muñoz., 1976 Mol. Cell. Biochem.10, 67–76). The distribution of 3H-labeled amino acids into purified F1-ATPase and its constituent polypeptides under different stages of growth was used to investigate the biosynthetic relationship between the different polypeptides. The incorporation of amino acids into purified BF1 factor was slower than that of cytoplasmic and other membrane proteins. In isotope-dilution and chase experiments, F1-ATPase showed one of the slowest rates of decay of the incorporated label. These results point out that F1-ATPase of M. lysodeikticus undergoes slower turnover than the overall cytoplasmic and membrane proteins. Pulse and chase experiments allowed us to conclude that the α, β, γ subunits and the components of relative mobility 1.0 are independent with differences in their turnover and therefore do not bear any apparent relation as precursors-products. The two major subunits represent seemingly the “core” of ATPase, the β subunit behaving like the most stable component. On the other hand, the γ subunit appears to be synthesized independently from this α + β complex.
Keywords:To whom all correspondence should be addressed  
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号