首页 | 本学科首页   官方微博 | 高级检索  
     


Semiparametric model-based inference in the presence of missing responses
Authors:Wang, Qihua   Dai, Pengjie
Affiliation:Academy of Mathematics and Systems Science, Chinese Academy of Science, Beijing 100080, China qhwang{at}amss.ac.cn jackdpj{at}yahoo.com.cn
Abstract:We consider a semiparametric model that parameterizes the conditionaldensity of the response, given covariates, but allows the marginaldistribution of the covariates to be completely arbitrary. Responsesmay be missing. A likelihood-based imputation estimator anda semi-empirical-likelihood-based estimator for the parametervector describing the conditional density are defined and provedto be asymptotically normal. Semi-empirical loglikelihood functionsfor the parameter vector and the response mean are derived.It is shown that the two semi-empirical loglikelihood functionsare distributed asymptotically as weighted {chi}2 and scaled {chi}2, respectively.
Keywords:Asymptotic efficiency    Missing response    Multiple imputation    Semi-empirical likelihood    Auxiliary information    Asymptotic Normality
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号