首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of RNA aptamer binding by the Wilms' tumor suppressor protein WT1
Authors:Zhai G  Iskandar M  Barilla K  Romaniuk P J
Affiliation:Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada V8W 3P6.
Abstract:The interaction of the zinc finger protein WT1 with RNA aptamers has been investigated using a quantitative binding assay, and the results have been compared to those from a previous study of the DNA binding properties of this protein. A recombinant peptide containing the four zinc fingers of WT1 (WT1-ZFP) binds to representatives of three specific families of RNA aptamers with apparent dissociation constants ranging from 13.8 +/- 1.1 to 87.4 +/- 10.4 nM, somewhat higher than the dissociation constant of 4.12 +/- 0.4 nM for binding to DNA. An isoform that contains an insertion of three amino acids between the third and fourth zinc fingers (WT1[+KTS]-ZFP) also binds to these RNAs with slightly reduced affinity (the apparent dissociation constants ranging from 22.8 to 69.8 nM) but does not bind to DNA. The equilibrium binding of WT1-ZFP to the highest-affinity RNA molecule was compared to the equilibrium binding to a consensus DNA molecule as a function of temperature, pH, monovalent salt concentration, and divalent salt concentration. The interaction of WT1-ZFP with both nucleic acids is an entropy-driven process. Binding of WT1-ZFP to RNA has a pH optimum that is narrower than that observed for binding to DNA. Binding of WT1-ZFP to DNA is optimal at 5 mM MgCl(2), while the highest affinity for RNA was observed in the absence of MgCl(2). Binding of WT1 to both nucleic acid ligands is sensitive to increasing monovalent salt concentration, with a greater effect observed for DNA than for RNA. Point mutations in the zinc fingers associated with Denys-Drash syndrome have dramatically different effects on the interaction of WT1-ZFP with DNA, but a consistent and modest effect on the interaction with RNA. The role of RNA sequence and secondary structure in the binding of WT1-ZFP was probed by site-directed mutagenesis. Results indicate that a hairpin loop is a critical structural feature required for protein binding, and that some consensus nucleotides can be substituted provided proper base pairing of the stem of the hairpin loop is maintained.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号