首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New patterns of nuclear lamina induced by cell fusion
Authors:Jost E  Johnson R T
Institution:Institute of Genetics, University of Giessen/Federal Republic of Germany.
Abstract:During the eukaryote cell cycle the nuclear envelope displays a series of major morphogenetic changes, the most significant of which include its breakdown and reconstitution as cells move up to, pass through and emerge from division. The three polypeptides, lamins A, B and C, are major components of the nuclear pore complex-lamina fraction of the nuclear envelope and their association with the nuclear membrane or their dispersal in the cytoplasm reflects the existing balance between polymerization and depolymerization in the envelope. We have perturbed the lamina polymerization cycle by means of cell fusion between mitotic and interphase cells, following the redistribution of nuclear lamina protein by means of immunofluorescence techniques. In these heterophasic heterokaryons changes in the distribution of lamina occur as a function of (1) the time elapsed after fusion; (2) the ratio of mitotic to interphase elements in the cell, and (3) the stage in the cell cycle occupied by the interphase partner at the time of fusion. Depolymerization of nuclear lamina occurs most rapidly in cells with high ratios of mitotic to interphase elements, and especially in G1 rather than S-phase nuclei. While lamina depolymerization predominates early after fusion, at later times lamina is deposited around both the original metaphase and interphase nuclear masses and this is associated with the resumption of interphase activity in the form of limited DNA synthesis. These observations lead us to conclude that lamina depolymerization is under positive control mediated by diffusible factors in the cytoplasm of the metaphase partner. Repolymerization is likely to be associated with the inactivation of these factors as the heterokaryons age and, as a result, pass into an interphase-like state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号