首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbohydrate analyses of Manduca sexta aminopeptidase N, co-purifying neutral lipids and their functional interactions with Bacillus thuringiensis Cry1Ac toxin.
Authors:S Sangadala  P Azadi  R Carlson  M J Adang
Institution:Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA.
Abstract:Bacillus thuringiensis Cry1Ac insecticidal toxin binds specifically to 120kDa aminopeptidase N (APN) (EC 3.4.11.2) in the epithelial brush border membrane of Manduca sexta midguts. The isolated 120-kDa APN is a member of a functional Cry1 toxin receptor complex (FEBS Lett. 412 (1997) 270). The 120-kDa form is glycosyl-phosphatidylinositol (GPI) anchored and converted to a 115-kDa form upon membrane solubilization. The 115-kDa APN also binds Cry1A toxins and Cry1Ac binding is inhibited by N-acetylgalactosamine (GalNAc). Here we determined the monosaccharide composition of APN. APN is 4.2mol% carbohydrate and contains GalNAc, a residue involved in Cry1Ac interaction. APN remained associated with non-covalently bound lipids through anion-exchange column purification. Most associated lipids were separated from APN by hydrophobic interaction chromatography yielding a lipid aggregate. Chemical analyses of the lipid aggregate separated from APN revealed neutral lipids consisting mostly of diacylglycerol and free fatty acids. The fatty acids were long, unsaturated chains ranging from C:14 to C:22. To test the effect of APN-associated lipids on Cry1Ac function, the lipid aggregate and 115-kDa APN were reconstituted into phosphatidylcholine (PC) vesicles. The lipid aggregate increased the amount of Cry1Ac binding, but binding due to the lipid aggregate was not saturable. In contrast the lipid aggregate promoted Cry1Ac-induced release of 86Rb(+) at the lowest Cry1Ac concentration (50nM) tested. The predominant neutral lipid component extracted from the lipid aggregate promoted Cry1Ac-induced 86Rb(+) release from membrane vesicles in the presence of APN.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号