首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sequence analysis of Arabidopsis thaliana E/ANTH-domain-containing proteins: membrane tethers of the clathrin-dependent vesicle budding machinery
Authors:Susanne E H Holstein  Peter Oliviusson
Institution:(1) Heidelberg Institute for Plant Sciences, University of Heidelberg, Heidelberg
Abstract:Summary. The epsin N-terminal homology (ENTH) domain is a conserved protein module present in cytosolic proteins which are required in clathrin-mediated vesicle budding processes. A highly similar, yet unique module is the AP180 N-terminal homology (ANTH) domain, which is present in a set of proteins that also support clathrin-dependent endocytosis. Both ENTH and ANTH (E/ANTH) domains bind to phospholipids and proteins, in order to support the nucleation of clathrin coats on the plasma membrane or the trans-Golgi-network membrane. Therefore, E/ANTH proteins might be considered as universal tethering components of the clathrin-mediated vesicle budding machinery. Since the E/ANTH protein family appears to be crucial in the first steps of clathrin-coated vesicle budding, we performed data base searches of the Arabidopsis thaliana genome. Sequence analysis revealed three proteins containing the ENTH signature motif and eight proteins containing the ANTH signature motif. Another six proteins were found that do not contain either motif but seem to have the same domain structure and might therefore be seen as VHS-domain-containing plant proteins. Functional analysis of plant E/ANTH proteins are rather scarce, since only one ANTH homolog from A. thaliana, At-AP180, has been characterized so far. At-AP180 displays conserved functions as a clathrin assembly protein and as an α-adaptin binding partner, and in addition shows features at the molecular level that seem to be plant-specific. Correspondence and reprints: Cell Biology, Heidelberg Institute for Plant Sciences, Im Neuenheimer Feld 230, 69120 Heidelberg, Federal Republic of Germany.
Keywords:: ANTH domain  Clathrin-mediated vesicle budding  Endocytosis  ENTH domain  Phospholipid  Protein interaction  VHS          domain  
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号