首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formation and photolability of low-spin ferrous cytochrome c peroxidase at alkaline pH.
Authors:J L Wang  N J Boldt  M R Ondrias
Institution:Department of Chemistry, University of New Mexico, Albuquerque 87131.
Abstract:The ferrous form of native cytochrome c peroxidase (CCP) is known to undergo a reversible transition when titrated over the pH range of 7.00-9.70. This transition produces a conversion from a pentacoordinate high-spin to a hexacoordinate low-spin heme active site and is clearly apparent in the heme optical absorption spectra. Here, we report the characterization of this transition and its effect upon the local heme environment using various optical spectroscopies. The formation of hexacoordinate low-spin heme is interpreted to involve the binding of His-52 at the distal site after the perturbation of the extensive H-bonded network within and around the heme pocket of CCP(II) at alkaline pH. Interestingly, CD investigations of CCP(II) in the far-UV and Soret regions indicate the dissappearance of a single high-spin species and the existence of at least two low-spin species of CCP(II) as the pH is raised above 7.90. Furthermore, transient resonance Raman experiments demonstrate that the hexacoordinate low-spin species can be photolyzed within 10-ns laser pulses, producing a species similar to the low-pH (high-spin) form of CCP(II) at alkaline pH. However, the extent of photolysis is quite pH dependent, with a maximum photodissociation yield at pH = 8.50.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号