首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pathogenicity ofPseudomonas aeruginosa and its relationship to the choline metabolism through the action of cholinesterase,acid phosphatase,and phospholipase C
Authors:Lisa  Teresita A  Lucchesi  Gloria I  Domenech  Carlos E
Institution:(1) Biological Chemistry, Department of Molecular Biology, Faculty of Exact, Physico-Chemical and Natural Sciences, University of Río Cuarto, Río Cuarto, Argentina
Abstract:The increase of cholinesterase (ChE), acid phosphatase (Ac.Pase), and phospholipase C (PLC) activities byPseudomonas aeruginosa was associated with the choline consumption in growth media of varied composition (high or low Pi concentrations, presence or absence of ammonium ion, amino acids, polyamines, peptone, or tricarboxylic acid cycle intermediates). The highest production of the three enzymes occurred in the late stationary growth phase. The simultaneous presence of alkaline phosphatase (Alk.Pase) and the above enzymes was noted when the bacteria were grown in low Pi medium plus choline, in the absence of a preferred carbon source. The importance of choline in the production of ChE, Ac.Pase, and PLC was observed in either clinical isolates or collection strains ofP. aeruginosa. These enzymes catalyze the hydrolysis of acetylcholine, phosphorylcholine, and phosphatidylcholine. Through their action the bacteria may break down various compounds (e.g., acetylcholine, from the corneal epithelium; lung surfactant dipalmitoylphosphatidylcholine; phosphorylcholine, a product of the PLC action) or cell membranes through the coordinated action of PLC and Ac.Pase or Alk.Pase. The final consequence of the action of these enzymes is an increase of the free choline concentration. Extrapolated to an in vivo situation, if the stationary growth phase resembles the conditions thatP. aeruginosa encounters in its natural environments, then it is possible to include choline among the factors promoting the pathogenicity of this bacterium.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号