首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Osteogenesis in vitro: from pre-osteoblasts to osteocytes
Authors:Venkatesh Krishnan  Ravi Dhurjati  Erwin A Vogler  Andrea M Mastro
Institution:(1) Departments of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA;(2) Biochemistry and Molecular Biology, Pennsylvania State University, 431, South Frear, University Park, PA 16802, USA;(3) Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA;(4) The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA;
Abstract:Murine calvariae pre-osteoblasts (MC3T3-E1), grown in a novel bioreactor, proliferate into a mineralizing 3D osteoblastic tissue that undergoes progressive phenotypic maturation into osteocyte-like cells. Initially, the cells are closely packed (high cell/matrix ratio), but transform into a more mature phenotype (low cell/matrix ratio) after about 5 mo, a process that recapitulates stages of bone development observed in vivo. The cell morphology concomitantly evolves from spindle-shaped pre-osteoblasts through cobblestone-shaped osteoblasts to stellate-shaped osteocyte-like cells interconnected by many intercellular processes. Gene-expression profiles parallel cell morphological changes, up-to-and-including increased expression of osteocyte-associated genes such as E11, DMP1, and sclerostin. X-ray scattering and infrared spectroscopy of contiguous, square centimeter-scale macroscopic mineral deposits are consistent with bone hydroxyapatite, showing that bioreactor conditions can lead to ossification reminiscent of bone formation. Thus, extended-term osteoblast culture (≤10 mo) in a bioreactor based on the concept of simultaneous growth and dialysis captures the full continuum of bone development otherwise inaccessible with conventional cell culture, resulting in an in vitro model of osteogenesis and a source of terminally differentiated osteocytes that does not require demineralization of fully formed bone.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号