首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Meiotic and isozymic characterization of plants regenerated from euploid and selfed monosomic tall fescue embryos
Authors:L S Dahleen  G C Eizenga
Institution:(1) Agronomy Department, University of Kentucky and USDA-ARS, 40546-0091 Lexington, KY, USA;(2) Present address: Department of Agronomy and Plant Genetics, University of Minnesota, 55108 St. Paul, MN, USA
Abstract:Summary Tissue culture of tall fescue (Festuca arundinacea Schreb., 2n=6x=42) would be enhanced by improving the callus induction and plant regeneration efficiency, and evaluating the meiotic and isozymic variation induced by culture. Mature embryos were cultured from four lines of Kenhy tall fescue and from the progeny of three selfed monosomics. Evaluation of six media-auxin combinations showed callus initiation was greatest on SH medium with 2.5 mg/l 2,4,5-T or 7.4 mg/l pCPA, while plant regeneration was greatest on SH medium with 0.5 mg/l 2,4-D. Cytological analyses of 27 plants derived from euploid parents showed a high frequency of aneuploidy (15/27). Chromosome numbers of aneuploids ranged from 36 to 41, with one plant having 80 chromosomes and two plants being asynaptic. Two of ten monosomic-derived plants were euploid, five were monosomic, one was monosomic with a fragment and two were double monosomic. Zymograms of the parents and regenerants were obtained for the enzymes ACPH, ADH, GOT, 6-PGD and PGI. Isozyme variation was observed for two groups of plants derived from the same Kenhy embryos. One group of four monosomic-derived plants differed for the enzymes GOT and ACPH, and all four plants had a PGI pattern. different from that of the parental monosomic plant. This indicated loss of a PGI allele, probably as a result of callus culture.Contribution No. 89-3-141 of the Kentucky Agricultural Experiment Station in cooperation with the USDA-ARS. Part of thesis research for senior author's M. S. degree
Keywords:Festuca arundinacea  Tissue culture  Somaclonal variation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号