首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Point mutation of (+)-germacrene A synthase from <Emphasis Type="Italic">Ixeris dentata</Emphasis>
Authors:Yung-Jin?Chang  Jianming?Jin  Hee-Young?Nam  Email author" target="_blank">Soo-Un?KimEmail author
Institution:(1) School of Agricultural Biotechnology, Seoul National University, Seoul, 151-742, Korea;(2) Plant Metabolism Research Center, Kyung Hee University, Yongin, 449-701, Korea
Abstract:Sesquiterpene cyclases catalyze the conversion of common precursor, farnesyl pyrophosphate, into various terpene backbones. X-ray crystallography of tobacco epi-aristolochene synthase has previously proposed a cyclization mechanism wherein the allylic carbocation intermediate is stabilized by the main chain carbonyl oxygens of three consecutive threonine residues. Alignment of amino acid sequences of plant terpene cyclases shows that the first position of the triad is almost invariably threonine or serine. To probe the carbocation-stabilizing role, the amino acid residues of the 433TSA435 triad in (+)-germacrene A synthase from Ixeris dentata were altered by site-directed mutagenesis. Enzyme kinetic measurements of the mutants and GC/MS analysis of the enzyme reaction products indicate that mutations of the triad decreased enzyme catalysis rather than substrate binding but did not affect its structural rearrangement in the catalytic mechanism. This is the first report that the hydroxyl group of threonine at the first position of the triad is required for the cyclase activity.
Keywords:(+)-germacrene A synthase  point mutation
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号