首页 | 本学科首页   官方微博 | 高级检索  
     


Peroxisome Dynamics in Cultured Mammalian Cells
Authors:Sofie J. Huybrechts  Paul P. Van Veldhoven  Chantal Brees  Guy P. Mannaerts  Georgyi V. Los   Marc Fransen
Affiliation:Katholieke Universiteit Leuven, Faculteit Geneeskunde, Departement Moleculaire Celbiologie, LIPIT, Campus Gasthuisberg (O&N 1), Leuven, Belgium;
Promega Corporation, 2800 Woods Hollow Road, Madison, WI-53711, USA
Abstract:Despite the identification and characterization of various proteins that are essential for peroxisome biogenesis, the origin and the turnover of peroxisomes are still unresolved critical issues. In this study, we used the HaloTag technology as a new approach to examine peroxisome dynamics in cultured mammalian cells. This technology is based on the formation of a covalent bond between the HaloTag protein–a mutated bacterial dehalogenase which is fused to the protein of interest–and a synthetic haloalkane ligand that contains a fluorophore or affinity tag. By using cell-permeable ligands of distinct fluorescence, it is possible to image distinct pools of newly synthesized proteins, generated from a single genetic HaloTag-containing construct, at different wavelengths. Here, we show that peroxisomes display an age-related heterogeneity with respect to their capacity to incorporate newly synthesized proteins. We also demonstrate that these organelles do not exchange their protein content. In addition, we present evidence that the matrix protein content of pre-existing peroxisomes is not evenly distributed over new organelles. Finally, we show that peroxisomes in cultured mammalian cells, under basal growth conditions, have a half-life of approximately 2 days and are mainly degraded by an autophagy-related mechanism. The implications of these findings are discussed.
Keywords:autophagy    de novo synthesis    in vivo pulse-labeling    non-symmetric fission    peroxisomes    protein trafficking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号