首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Life cycle assessment of nanocomposites made of thermally conductive graphite nanoplatelets
Authors:Alfredo Pizza  Renaud Metz  Mehrdad Hassanzadeh  Jean-Louis Bantignies
Institution:1. Laboratoire Charles Coulomb, UMR 5221, Université Montpellier 2/Université Lyon 1, 34095, Montpellier, France
2. Schneider Electric, Medium Voltage Switchgear/DRC, 1340 rue de Pinville, 34965, Montpellier, France
Abstract:

Purpose

Polymers typically have intrinsic thermal conductivity much lower than other materials. Enhancement of this property may be obtained by the addition of conductive fillers. Nanofillers are preferred to traditional ones, due to their low percolation threshold resulting from their high aspect ratio. Beyond these considerations, it is imperative that the development of such new fillers takes place in a safe and sustainable manner. A conventional life cycle assessment (LCA) has been conducted on epoxy-based composites, filled with graphite nanoplatelets (GnP). In particular, this study focuses on energy requirements for the production of such composites, in order to stress environmental hot spots and primary energy of GnP production process (nano-wastes and nanoparticles emissions are not included).

Methods

A cradle-to-grave approach has been employed for this assessment, in an attributional modeling perspective. The data for the LCA have been gathered from both laboratory data and bibliographic references. A technical LCA software package, SimaPro (SimaPro 7.3), which contains Ecoinvent (2010) life cycle inventory (LCI) database, has been used for the life cycle impact assessment (LCIA), studying 13 mid-point indicators. Sensitivity and uncertainty analyses have also been performed.

Results and discussion

One kilogram of GnP filler requires 1,879 MJ of primary energy while the preparation of 1 kg of epoxy composite loaded with 0.058 kg of GnP 303 MJ. Besides energy consumption in the filler preparation, it is shown that the thermoset matrix material has also a non-negligible impact on the life cycle despite the use of GnP: the primary energy required to make epoxy resin is 187 MJ, i.e., 62 % of the total energy to make 1 kg of composite.

Conclusions

Raw material extraction and filler and resin preparation phase exhibit the highest environmental impact while the composite production is negligible. Thermosetting resin remains the highest primary energy demand when used as matrix for GnP fillers. The result of the sensitivity analysis carried out on the electricity mix used during the GnP and the composite production processes does not affect the conclusions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号