首页 | 本学科首页   官方微博 | 高级检索  
     


Plasmodium falciparum: ATP/ADP transport across the parasitophorous vacuolar and plasma membranes
Authors:I Choi  R B Mikkelsen
Affiliation:Department of Radiation Oncology, Medical College of Virginia, Richmond 23298.
Abstract:Previous studies have shown that ATP is required for the growth of the intracellular parasite, Plasmodium, outside its host cell, the erythrocyte, and that bongkrekic acid, an inhibitor of mitochondrial ATP/ADP transporter, inhibits intraerythrocytic Plasmodium maturation. We have characterized ATP/ADP transport of Plasmodium falciparum, isolated by either immune lysis or N2-cavitation. [3H]ATP uptake was due to ATP/ADP exchange since ADP efflux was dependent on exogenous ATP in an approximate 1:1 stoichiometry and both ATP influx and ADP efflux were equally inhibited by atractyloside (Ki = 100 nM). ATP uptake was not inhibited by the nucleoside transport inhibitor, nitrobenzylthioinosine. Conversely, adenosine and hypoxanthine transport were insensitive to atractyloside. ATP influx was characterized by a Km = 0.14 mM and Vmax = 1.2 nmol ATP/min/10(6) cells. Substrate specificity studies for nucleotide-induced ADP efflux indicated a preference for an adenosine ring and triphosphate, but transport did not require a hydrolyzable phosphate bond. Protein synthesis was measured with free parasites starved of glucose. Addition of 1.0 mM ATP resulted in a 40% recovery of total protein synthetic capacity in a process inhibited by 500 nM atractyloside, suggesting that uptake of erythrocyte-derived ATP by P. falciparum may be essential for maintaining maximal rates of protein synthesis during specific stages of intra-erythrocytic parasite maturation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号