首页 | 本学科首页   官方微博 | 高级检索  
     


Isorhapontigenin, a new resveratrol analog, attenuates cardiac hypertrophy via blocking signaling transduction pathways
Authors:Li Hong-Liang  Wang Ai-Bing  Huang Yue  Liu De-Pei  Wei Chiming  Williams G Metville  Zhang Chan-Na  Liu Guang  Liu Yu-Qing  Hao De-Long  Hui Rui-Tai  Lin Mao  Liang Chih-Chuan
Affiliation:National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Beijing 100005, Peoples' Republic of China.
Abstract:Cardiac hypertrophy is a major cause of morbidity and mortality worldwide. The hypertrophic process is mediated, in part, by oxidative stress-mediated signaling pathways. We hypothesized that isorhapontigenin (ISO), a new resveratrol analog, inhibits cardiac hypertrophy by blocking oxidative stress and oxidative stress-mediated signaling pathways. We treated cardiomyocytes with angiotensin II (Ang II) with or without ISO and found that ISO inhibited Ang II-induced cardiac hypertrophy. These effects were associated with a decrease in the levels of reactive oxygen species and H2O2 and the content of intracellular malonaldehyde and an increase in the activities of superoxide dismutase and glutathione peroxidase. Ang II induced the phosphorylation of PKC, Erk1/2, JNK, and p38 in cardiomyocytes and such phosphorylation was inhibited by ISO. ISO also blocked the PKC-dependent PI3K-Akt-GSK3beta/p70S6K pathway. These effects lead to direct or indirect inhibition of NF-kappaB and AP-1 activation. Our results revealed that pretreatment with ISO significantly inhibited Ang II-mediated NF-kappaB through affecting the degradation and phosphorylation of IkappaBalpha and the activity of IKKbeta and AP-1 activation by influencing the expression of c-Fos and c-Jun proteins. In addition, we also established the molecular link between activation of PKC and MAPKs and activation of NF-kappaB and AP-1 in cardiomyocytes. We also found that ISO treatment significantly attenuated heart weight/body weight ratio by approximately 25%, decreased posterior wall thickness and left ventricle diastolic and systolic diameters, and increased 10% fractional shortening in an aortic-banded rat model. Furthermore, treatment with ISO significantly decreased cardiac myocyte size and systolic blood pressure. These findings suggest that ISO prevents the development of cardiac hypertrophy through an antioxidant mechanism involving inhibition of different intracellular signaling transduction pathways.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号