首页 | 本学科首页   官方微博 | 高级检索  
     


Cloning and characterization of a caesalpinoid (Chamaecrista fasciculata) hemoglobin: the structural transition from a nonsymbiotic hemoglobin to a leghemoglobin
Authors:Gopalasubramaniam Sabarinathan K  Kovacs Frank  Violante-Mota Fernando  Twigg Paul  Arredondo-Peter Raúl  Sarath Gautam
Affiliation:Laboratorio de Biofísica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Morelos, México.
Abstract:Nonsymbiotic hemoglobins (nsHbs) and leghemoglobins (Lbs) are plant proteins that can reversibly bind O(2) and other ligands. The nsHbs are hexacoordinate and appear to modulate cellular concentrations of NO and maintain energy levels under hypoxic conditions. The Lbs are pentacoordinate and facilitate the diffusion of O(2) to symbiotic bacteroids within legume root nodules. Multiple lines of evidence suggest that all plant Hbs evolved from a common ancestor and that Lbs originated from nsHbs. However, little is known about the structural intermediates that occurred during the evolution of pentacoordinate Lbs from hexacoordinate nsHbs. We have cloned and characterized a Hb (ppHb) from the root nodules of the ancient caesalpinoid legume Chamaecrista fasciculata. Protein sequence, modeling data, and spectral analysis indicated that the properties of ppHb are intermediate between that of nsHb and Lb, suggesting that ppHb resembles a putative ancestral Lb. Predicted structural changes that appear to have occurred during the nsHb to Lb transition were a compaction of the CD-loop and decreased mobility of the distal His inhibiting its ability to coordinate directly with the heme-Fe, leading to a pentacoordinate protein. Other predicted changes include shortening of the N- and C-termini, compaction of the protein into a globular structure, disappearance of positive charges outside the heme pocket and appearance of negative charges in an area located between the N- and C-termini. A major consequence for some of these changes appears to be the decrease in O(2)-affinity of ancestral nsHb, which resulted in the origin of the symbiotic function of Lbs.
Keywords:Caesalpinoideae  evolution  function  globin  Leguminosae  modeling  origin  spectroscopy  structure  symbiosis
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号