首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of capillary hydraulic conductivity in response to an acute change in shear
Authors:Kim Min-ho  Harris Norman R  Tarbell John M
Affiliation:Department of Bioengineering, Pennsylvania State University, University Park, USA.
Abstract:The effects of mechanical perturbations (shear stress, pressure) on microvascular permeability primarily have been examined in micropipette-cannulated vessels or in endothelial monolayers in vitro. The objective of this study is to determine whether acute changes in blood flow shear stress might influence measurements of hydraulic conductivity (L(p)) in autoperfused microvessels in vivo. Rat mesenteric microvessels were observed via intravital microscopy. Occlusion of a third-order arteriole with a micropipette was used to divert and increase flow through a nonoccluded capillary or fourth-order arteriolar branch. Transvascular fluid filtration rate in the branching vessel was measured with a Landis technique. Flow (shear)-induced increases in L(p) disappeared within 20-30 s of the removal of the shear and could be eliminated with nitric oxide synthase inhibition. The shear-induced increase in L(p) was greater in capillaries compared with terminal arterioles. An acute change in shear may regulate L(p) by a nitric oxide-dependent mechanism that displays heterogeneity within a microvascular network.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号