首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Methyl-Deficient Transfer Ribonucleic Acid and Macromolecular Synthesis in Methionine-Starved Saccharomyces cerevisiae
Authors:Kerstin Kjellin-Strby and  John H Phillips
Institution:Kerstin Kjellin-Stråby and John H. Phillips
Abstract:Haploid methionine auxotrophs of Saccharomyces cerevisiae continue to multiply for several hours after withdrawal of a required amino acid from the medium. Macro-molecular synthesis continues during this period of residual growth, although the net ribonucleic acid (RNA) and protein content is constant during the later part of this period. In this study, growth after withdrawal of methionine was in some cases accompanied by accumulation of transfer RNA (tRNA), which was shown by methylation in vitro to be deficient in methyl groups. This phenomenon was shown by only four of nine methionine auxotrophs tested, but no evidence could be found that these four strains had "relaxed" control of RNA synthesis. The nine methionine-requiring strains represent mutations in five different positions in the methionine biosynthesis pathway, and only mutants blocked at two of these five positions accumulated methyl-deficient tRNA. This accumulation therefore appears to be correlated with the position of the strain's block in the pathway of methionine biosynthesis.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号