首页 | 本学科首页   官方微博 | 高级检索  
     


Chronic exposure to ammonia alters pathways modulating phosphorylation of microtubule-associated protein 2 in cerebellar neurons in culture
Authors:Sáez R  Llansola M  Felipo V
Affiliation:Laboratory of Neurobiology, Instituto de Investigaciones Citologicas, Fundación Valenciana de Investigaciones Biomédicas, Valencia, Spain.
Abstract:Hyperammonemia is considered the main cause for the neurological alterations found in hepatic failure. However, the mechanisms by which high ammonia levels impair cerebral function are not well understood. It has been shown that chronic hyperammonemia impairs signal transduction pathways associated with NMDA receptors and also alters phosphorylation of some neuronal proteins. The aim of the present work was to analyze the effects of chronic exposure to ammonia on phosphorylation of microtubule-associated protein 2 (MAP-2) in intact neurons in culture and to assess whether modulation of MAP-2 phosphorylation by glutamate receptor-associated transduction pathways is altered in neurons chronically exposed to ammonia. It is shown that chronic exposure to ammonia increases basal phosphorylation of MAP-2 by approximately 70%. This effect seems to be due to a decreased tonic activation of NMDA receptors and of calcineurin. Chronic exposure to ammonia also alters the modulation of MAP-2 phosphorylation by NMDA receptors and metabotropic glutamate receptors. In neurons exposed to ammonia, treatment with NMDA for 30 min induced a significant decrease in phosphorylation of MAP-2. Activation of metabotropic glutamate receptors with (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid significantly increased phosphorylation of MAP-2 in control neurons, whereas in neurons exposed to ammonia the response was the opposite, with 1-aminocyclopentane-1,3-dicarboxylic acid inducing a dephosphorylation of MAP-2. These results indicate that ammonia alters significantly signal transduction pathways associated with different types of glutamate receptors. This would lead therefore to significant alterations in glutamatergic neurotransmission, which would contribute to the neurological alterations found in hyperammonemia and in hepatic encephalopathy.
Keywords:NMDA receptors    Metabotropic glutamate receptors    Signal transduction    Microtubules    Hyperammonemia.
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号