首页 | 本学科首页   官方微博 | 高级检索  
     


Lyase activities of CpcS- and CpcT-like proteins from Nostoc PCC7120 and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin beta-subunits
Authors:Zhao Kai-Hong  Zhang Juan  Tu Jun-Ming  Böhm Stephan  Plöscher Matthias  Eichacker Lutz  Bubenzer Claudia  Scheer Hugo  Wang Xing  Zhou Ming
Affiliation:College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China. khzhao@163.com
Abstract:Genes all5292 (cpcS2) and alr0617 (cpcS1) in the cyanobacterium Nostoc PCC7120 are homologous to the biliprotein lyase cpcS, and genes all5339 (cpcT1) and alr0647 (cpcT2) are homologous to the lyase cpcT. The functions of the encoded proteins were screened in vitro and in a heterologous Escherichia coli system with plasmids conferring biosynthesis of the phycocyanobilin chromophore and of the acceptor proteins beta-phycoerythrocyanin (PecB) or beta-phycocyanin (CpcB). CpcT1 is a regioselective biliprotein lyase attaching phycocyanobilin exclusively to cysteine beta155 but does not discriminate between CpcB and PecB. The in vitro reconstitutions required no cofactors, and kinetic constants were determined for CpcT1 under in vitro conditions. No lyase activity was found for the lyase homologues CpcS2 and CpcT2, but complexes are formed in vitro between CpcT1 and CpcS1, CpcT2, or PecE (subunit of phycoviolobilin:alpha-phycoerythrocyanin isomerase lyase). The genes coding the inactive homologues, cpcS2 and cpcT2, are transcribed in N-starved Nostoc. In sequential binding experiments with CpcT1 and CpcS1, a chromophore at cysteine 84 inhibited the subsequent attachment to cysteine 155, whereas the inverse sequence generates subunits carrying both chromophores.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号