首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin
Authors:W Bode  Z Chen  K Bartels  C Kutzbach  G Schmidt-Kastner  H Bartunik
Institution:Max-Planck-Institut fuer Biochemie D 8033 Martinsried bei Muenchen, West Germany;Bayer AG, Wuppertal, West Germany;European Molecular Biology Laboratory Outstation c/o Desy, Hamburg,, West Germany
Abstract:Porcine pancreas kallikrein A has been crystallized in the presence of the small inhibitor benzamidine, yielding tetragonal crystals of space group P41212 containing two molecules per asymmetric unit. X-ray data up to 2·05 Å resolution have been collected using normal rotation anode as well as synchrotron radiation. The crystal structure of benzamidine-kallikrein has been determined using multiple isomorphous replacement techniques, and has subsequently been refined to a crystallographic R-value of 0·220 by applying a diagonal matrix least-squares energy constraint refinement procedure.Both crystallographically independent kallikrein molecules 1 and 2 are related by a non-integral screw axis and form open, heterologous “dimer” structures. The root-mean-square deviation of both molecules is 0·37 Å for all main-chain atoms. This value is above the estimated mean positional error of about 0·2 Å and reflects some significant conformational differences, especially at surface loops. The binding site of molecule 1 in the asymmetric unit is in contact with residues of molecule 2, whereas the binding site of the latter is free and accessible to the solvent. In both molecules the characteristic “kallikrein loop”, where the peptide chain of kallikrein A is cleaved, is only partially traceable. The carbohydrate attached to Asn95 in this loop, although detectable chemically, is not defined.A comparison of the refined structures of porcine kallikrein and bovine trypsin indicates spatial homology for these enzymes. The root-mean-square difference is 0·68 Å if we compare only main-chain atoms of internal segments. Remarkably large deviations are found in some external loops most of which surround the binding site and form a more compact rampart around it in kallikrein than in trypsin. This feature might explain the strongly reduced activity and accessibility of kallikrein towards large protein substrates and inhibitors (e.g. as shown by the model-building experiments on inhibitor complexes reported by Chen &; Bode. 1983).The conformation of the active site residues is very similar in both enzymes. Tyr99 of kallikrein, which is a leucyl residue in trypsin, protrudes into the binding site and interferes with the binding of peptide substrates (Chen &; Bode. 1983). The kallikrein specificity pocket is significantly enlarged compared with trypsin due to a longer peptide segment, 217 to 220, and to the unique outwards orientation of the carbonyl group of cis-Pro219. Further, the side-chain of Ser226 in porcine kallikrein, which is a glycyl residue in trypsin, partially covers Asp 189 at the bottom of the pocket. These features considerably affect the binding geometry and strength of binding of benzamidine.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号