首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Muscarinic acetylcholine receptors stimulate Ca2+ influx in PC12D cells predominantly via activation of Ca2+ store-operated channels
Authors:Ebihara Tatsuhiko  Guo Feifan  Zhang Lei  Kim Ju Young  Saffen David
Institution:Department of Neurochemistry, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033.
Abstract:Activation of muscarinic acetylcholine receptors (mAChRs) causes the rapid release of Ca2+ from intracellular stores and a sustained influx of external Ca2+ in PC12D cells, a subline of the widely studied cell line PC12. Release of Ca2+ from intracellular stores and a sustained influx of Ca2+ are also observed following exposure to thapsigargin, a sesquiterpene lactone that depletes intracellular Ca2+ pools by irreversibly inhibiting the Ca2+ pump of the endoplasmic reticulum. In this study, we show that carbachol and thapsigargin empty the same intracellular Ca2+ stores, and that these stores are a subset of intracellular stores depleted by the Ca2+ ionophore ionomycin. Intracellular Ca2+ stores remain depleted during continuous stimulation of mAChR with carbachol in medium containing 2 mM extracellular Ca2+, but rapidly refill following inhibition of mAChRs with atropine. Addition of atropine to carbachol-stimulated cells causes intracellular Ca2+ levels to return to baseline levels in two steps: a rapid decrease that correlates with the reuptake of Ca2+ into internal stores and a delayed decrease that correlates with the inhibition of a Mn2+-permeable Ca2+ channel. Several lines of evidence suggest that carbachol and thapsigargin stimulate Ca2+ influx by a common mechanism: (i) pretreatment with thapsigargin occludes atropine-mediated inhibition of Ca2+ influx, (ii) carbachol and thapsigargin applied individually or together are equally efficient at stimulating the influx of Mn2+, and (iii) identical rates of Ca2+ influx are observed when Ca2+ is added to cells pretreated with carbachol, thapsigargin, or both agents in the absence of extracellular Ca2+. Taken together, these data suggest that the sustained influx of extracellular Ca2+ observed following activation of mAChRs in PC12D cells is mediated primarily by activation of a Mn2+-permeable, Ca2+ store-operated Ca2+ channel.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号