首页 | 本学科首页   官方微博 | 高级检索  
     


Calcium-dependent synaptic vesicle trafficking underlies indefatigable release at the hair cell afferent fiber synapse
Authors:Schnee Michael E  Santos-Sacchi Joseph  Castellano-Muñoz Manuel  Kong Jee-Hyun  Ricci Anthony J
Affiliation:Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA 94304, USA.
Abstract:Sensory hair cell ribbon synapses respond to graded?stimulation in a linear, indefatigable manner, requiring that vesicle trafficking to synapses be rapid and nonrate-limiting. Real-time monitoring of vesicle fusion identified two release components. The first was saturable with both release rate and magnitude varying linearly with Ca(2+), however the magnitude was too small to account for sustained afferent firing rates. A second superlinear release component required recruitment, in a Ca(2+)-dependent manner, of vesicles not in the immediate vicinity of the synapse. The superlinear component had a constant rate with its onset varying with Ca(2+) load. High-speed Ca(2+) imaging revealed a nonlinear increase in internal Ca(2+) correlating with the superlinear capacitance change, implicating release of stored Ca(2+) in driving vesicle recruitment. These data, supported by a mass action model, suggest sustained release at hair cell afferent fiber synapse is dictated by Ca(2+)-dependent vesicle recruitment from a reserve pool.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号